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A'airaci. A classical scattering system is chaoric if ir possesses a iractai sci o i  trapped 
unstable orbits, resulting in singular deflection functions. A scattering system is regular if 
it supports only a countable set of trapped unstable orbits. Its deflection functions are 
piecewise smooth with at most a countable number of scattering singularities caused by 
the trapped orbits. Despite the simple Stmcture of the deflection functions, the Poincart 
scattering mapping (PSM) may be regular, hyperbolic or display mixed dynamics. Thus, 
the degree of chaoticity of the PSM selves as a finer scale far the discussion ofthe transition 
to chaotic scattering in the classical domain. In the quantum domain we show that the 
properties of the PSM determine the statistics of the eigenphases of the S-matrix, and that, 
if the PSM is hyperbolic, the eigenphases follow the statistics predicted by random matrix 
theory. 

1. Introduction 

= h e  interest in chaotic scattering, and the recognition of its reievance in various tieids 
of physics, has resulted in an ever-growing number of studies of this phenomenon. In 
particular, the identification of universal features which can clearly distinguish between 
chaotic and regular scattering is a key issue in recent research. A classical scattering 
system is chaotic when it possesses a non-trivial set of unstable trapped orbits. The 
properties (such as, for example, the Lyapunov exponent or the topological entropy) 

particular, the stable and unstable manifolds of the trapped periodic orbits extend to 
the asymptotic domain, resulting in classical deflection functions which are fractal 
functions with self-similar structures on all scales and abundant (Cantor set) sin- 
gularities [l, 21. 

The quantal behaviour of classically chaotic systems was shown to display universal 
features. The scattering matrix corresponding to such processes in the limit of small 
h fluctuates according to the prediction of random matrix theory (RMT) [3]. Another 
important feature which characterizes quantum chaotic scattering is the distribution 
of the poles of the S-matrix in the complex energy plane. It was shown rigorously [4] 
and semiclassically [5] that, for some typical scattering problems, there exists a lower 
bound to the width of the resonances, in other words poles are excluded from the strip 
O> 5 ( ~ ~ )  > -re, where sj is the pole position in the complex energy plane, and re is 
the gap parameter which can be expressed in terms of the parameters of the ciassicai 

of this set dete.mine the qnmities which ch2racterize the sc2ttering precess. !E 

Heisenberg fellow of the Deutsche Forschungrgemeinschaft. 
"On sabbatical leave from the Weizmann Institute of Science. 

0305-4470/92/061483 120P04.50 @ 1992 IOP Publishing Ltd 1483 



1484 R Blumel et al 

set of trapped orbits. In the semiclassical limit, one can show that the spacings between 
adjacent resonances are smaller than the typical resonance width. Thus, the semi- 
classical regime is the regime of overlapping resonances. The fluctuations in the 
observed scattering amplitudes can be attributed to the interfering contributions from 
a large number of poles [6,7]. 

All the scattering systems which do not show chaotic scattering in the sense described 
above can be classified as ‘regular’. Within this broad class of systems one can 
distinguish an interesting and important evolution of the degree of complexity of the 
scattering dynamics, and in the present paper we would like to discuss this issue from 
both the classical and the quantum mechanical points of view. 

The simplest systems are those which are ‘completely integrable’. We shall define 
the precise meaning of this concept in section 2. A typical case is the elastic scattering 
by a potential with spherical or cylindrical symmetry, where the angular momentum 
perpendicular to the scattering plane is a proper integral of the motion. More complex 
but still regular scattering systems are those which do not possess such integrals of 
motion, but, on the other hand, cannot support trapped orbits, or, at most, have a 
finite number of them. An example of such a system is the scattering from a convex 
(but not symmetric) obstacle. If such an obstacle is deformed to become concave, it 
can trap more and more trajectories and finally may show chaotic scattering when the 
set of unstable trapped orbits becomes a fractal set. In this case it is also possible to 
get regions of positive measure of trapped orbits. 

There exist in the literature some studies of the transition of the type described 
above [8,9] .  In particular, interesting results were derived on the mechanism by which 
the number of trapped periodic orbits increases when a control parameter is varied, 
and the corresponding modification of the symbolic dynamics used to describe the 
trapped orbits. A corresponding study in the quantum domain does not exist, and in 
the present paper we would like to contribute towards a better understanding of the 
transition as observed in the quantum theory. 

In our approach it is useful to consider the scattering process as a means to induce 
a mapping by which the parameters which define the incoming particles or wavefront 
are mapped into parameters which specify the outgoing particles (or waves). In wave 
mechanics the operator which generates this mapping is the S-matrix. In classical 
mechanics it is the PoincarC scattering mapping (PSM) [lo], which is the classical 
analogue of the S-matrix. We shall devote section 2 to the definition and discussion 
of the PSM. Here, we shall illustrate it by means of an example: consider elastic 
scattering in the plane from a potential which is not cylindrically symmetric. The 
asymptotic parameters are the incident angle 0 and the incident angular momentum 
1. After the scattering, the particle leaves the interaction region with the angle 8’ and 
angular momentum I’. The primed quantities are functions of the unprimed quantities, 
and these functions constitute a mapping (the PSM) in the (0, I) plane which can be 
shown to be area preserving. A successive application of the PSM can be understood 
as subjecting the particle to another scattering, in which the previous final conditions 
serve as initial conditions. 

The PSM for a completely regular system conserves the integrals of the motion. 
Hence, a trace of a ‘trajectory’ obtained by successive applications of the PSM will 
occupy a torus, which, for two-dimensional problems, consists of a closed line in the 
( 8 ,  I )  plane. In the example mentioned above, consider the scattering from a potential 
with cylindrical symmetry. The integral of the motion is the angular momentum and 
the PSM is reduced to a twist. 
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At the other extreme, where chaotic scattering prevails, the functions which define 
the mapping are fractal functions of the type discussed above. Iterating such a mapping 
and plotting the results in the plane of final asymptotic variables one gets a distribution 
which covers evenly the entire available domain. 

For scattering systems which fall between the two extremes, the mapping functions 
are smooth or at  most display a finite number of singularities. The singularities are 
due to the intersection of the stable manifolds of the trapped unstable orbits with the 

consider here. In spite of the well-behaved dependence of the mapping functions on 
the arguments, their iterations may lead to a large variety of behaviours, ranging from 
regular to chaotic. Thus, the PSM provides us with a means to establish a hierarchy of 
complexity within the class ofnon-chaoticscattering systems, according to the chaoticity 
of the PSM. A more detailed discussion of this classification will be deferred to the 
next section. 

Having established the hierarchy of complexity in regular scattering systems, we 
shall focus our attention on systems which d o  not display chaotic scattering, but whose 
PSM is hyperbolic. We shall study their classical behaviour and then quantize them 
and check to what extent their S-matrices follow the rules prescribed by RMT. We shall 
study the distribution of the eigenvalues (eigenphases) and of the matrix elements 
themselves. We shall show that, for this class of problems, the eigenvalue distributions 
follow the predictions of RMT. This behaviour is consistent with the semiclassical 
arguments [3] which show that the spectral two-point correlation function reproduces 
the RMT behaviour if the PSM is hyperbolic. The distribution of the S-matrix elements 
and their correlations do not necessarily follow the RMT statistics, and we show the 
results of an analysis of two systems. Both systems have hyperbolic P S M ~  (in spite of 
showing regular classical scattering). Their spectral distributions follow RMT, but for 
one of them the S-matrix statistics follow the RMT distributions, whereas for the other 
system there are marked deviations. 

A paradigm example is the scattering from the outside of a convex billiard, which 
will be discussed in section 3. This scattering system is regular since there exist no 
trapped orbits. We shall show, however, that the PSM is completely equivalent to the 
mapping that describes the motion inside the billiard, and, therefore, for a proper 

semiclassical argument which connects the statistics of the S-matrix of the scattering 
problem to the energy spectrum of the inside problem. The methods used in section 
3 were first developed [ I l l  for the purpose of semiclassical quantization of chaotic 
billiards from a scattering point of view. We repeat some of their derivations for the 
sake of completeness. 

In section 4 we shall proceed with the numerical examples where we carried out 
detailed statistical studies of the S-matrix. Both systems are closely related to the 
problem of scattering from billiards, and the numerical analysis supports strongly the 
semiclassical ideas put forward in section 3. We shall finally summarize and discuss 
our findings in section 5 .  

..YJ..'Y."..I 2.rrmntntir. A f i m & n  Th-rP I...,.u is 2 fi2ite 2nFb-ber of such ix systeaT-s .uhi& w p  

choice of the bi!!i.rd shape (e.g. stadicm) it is hypcrbo!ic. we sha!! then give I 

2. The Poincark scattering mapping 

Assume that scattering trajectories in both the incoming and outgoing directions are 
labelled by the numerical values ai of a set of phase space functions Ai which are 
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constants of the motion in the asymptotic domain. The Hamiltonian can be taken as 
one of the Ai with the corresponding value of the energy E as one of the ai. Generic 
scattering trajectories possess both incoming and outgoing asymptotes, which are 
labelled by a, and a: ,  respectively. Thus, the set of all scattering trajectories defines a 
scattering mapping fi by 

a '=  G(a) (2.1) 

where a stands for the vector of asymptotic labels a,. It should be noted that fi may 
be singular on a subset of measure zero in the domain of initial conditions. 

The mapping fi is not yet the classical analogue of the quantum S-matrix, since 
S is defined relative to the free motion, whose effects are 'divided out' (using, for 
example, the interaction representation). In the classical domain a similar procedure 
is also required. In typical scattering problems A, functions which correspond to action 
variables are constant in the asymptotic domain. The conjugate angle variables, 
however, may change periodically with time, and what remains constant are the reduced 
angles or the phaseshifts which survive after the free propagation in the asymptotic 
region is subtracted. These phaseshifts are the variables ai which, together with the 
actions, specify the classical asymptotes. A problem which is intimately connected 
with the procedure for determi?ing the reduced angles relates to the problem of multiple 
applications of the mapping M. In other words, we have to provide a mechanism by 
which outgoing conditions can serve as incoming conditions for the next application 
of the mapping. 

For systems where the full Hamiltonian H can be decomposed into a free part Ho 
and an interaction V, the reinjection and removal of the trivial time variation due to 
the free motion can be achieved in the following way. A scattering trajectory develops 
forward in time with the full Hamiltonian H as the generator of the motion. Once the 
asymptotic region (where V vanishes) is reached, we use Ho as the generator of the 
motion, and run it backwards in time until the incoming asymptotic domain is reached. 
At this point H replaces Ho and the time runs forward, starting a new iteration of the 
mapping. This successive application of the mapping M and the reinjection mechanism 

With this picture in mind, it is clear that the PSM is completely integrable under 
the following conditions only. There must exist a complete set of phase space functions 
K which are conserved under the action of H. In addition, if we denote by KO the 
functions to which K reduces in the asymptotic limit, then we require that KO should 
be conserved under the action of Ho. Such a situation is as rare as complete integrability 
for bounded systems, and these form the class of systems to which we referred in the 
opening remarks as being completely integrable. The preceding analysis implies that 
the integrability of the Hamiltonian system does not necessarily lead to the integrability 
of the PSM. The situation where the Hamiltonian is integrable but the PSM is not is of 
particular interest for us in the present paper. The integrability of H implies that the 
phase space can be foliated in an invariant way by the transport of the asymptotic 
conditions. This, however, does not imply that the PSM is integrable. We illustrate this 
important observation with the following example. 

Consider the scattering of a charged particle off an electric dipole in a plane. In 
polar coordinates: 

described above completes the construction of the PSM. I 
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We added a term c / 2 r 2  with c >  1 to avoid an  infinitely deep attractive potential. In 
this system, K =L2+cos + + c  is a conserved quantity. Since K is independent of r, 
it retains its form in the asymptotic regime, hence KO = K.  However, KG is not conserved 
under the action of Ho,  which is here the kinetic energy part of H. Thus, the reinjection 
process does not conserve the value of K.  This can be easily understood by actually 
performing the reinjection as explained above. Take an asymptote labelled by (E, L, 4). 
Reverse the time and let the particle run backwards in time with Ho as the generator 
of the motion. It runs along a straight line and ends up in an asymptote which is 
characterized by (E, L, C$ + T). However, for most +-values, K ( E ,  L, $1 # 
K ( E ,  L, T+ +). Besides K there is no other constant of the motion, and we therefore 
conclude that the PSM is not integrable, even though the Hamiltonian is analytically 
integrable. 

The above discussion allows us to divide the set of scattering systems into three 
classes: 

Class I-systems displaying chaotic scattering. The PSM is singular on a fractal set, 
there is no invariant foliation of phase space and the PSM is automatically chaotic. 

Class 11-systems with deflection functions with at most a finite number of sin- 
gularities. Phase space might be foliated into invariant leaves by the transport of initial 
conditions, but the resulting PSM is chaotic. 

Class 111-systems for which the PSM is completely integrable. In this case a foliation 
of the phase space exists by the transport of the asymptotic foliation provided by the 
PSM. The deflection function cannot be chaotic in this case. 

Class 111 systems are the scattering analogues of integrable bounded systems. They 
are structurally unstable against weak perturbations. Systems in class I1 or in class I 
can be structurally stable. Class I1 systems provide a type of integrability of the 
Hamiltonian dynamics in phase space which can be stable in contrast to the integrability 
of bounded systems. The PSM for systems in class I1 can be either completely hyperbolic, 
or may show the interwoven structures of elliptic islands within hyperbolic stripes. In 
the next sections we shall study systems which belong to class I1 and whose PSM may 
show the features mentioned above. 

3. Scattering from convex billiards 

As a first example of class I1 systems, consider elastic scattering from a convex billiard 
in the plane. Classical trajectories are determined by specular reflections, and the 
corresponding wave-scattering problem has to be solved with Dirichlet boundary 
conditions. 

Classical scattering from the convex billiard is definitely not chaotic: there exist 
no trapped orbits, and the classical deflection function is continuous as long as the 
billiard has a boundary with a continuous derivative (this will be assumed throughout). 
The asymptotic phase space is a cylinder which is defined in terms of the incidence 
angle 0 and the angular momentum I, which we shall express in units of h. The angular 
momentum is defined relative to a reference point inside the billiard. For any given e 
there exist two limiting values of the angular momentum, IL(0) and I + ( @ )  such that 
no reflection occurs for trajectories which aim at the billiard at an angle t7 with I < I _ (  e) 
or I >  I + ( @ ) .  An intermediate value [,(e) can also be defined as the angular momentum 
at which the deflection is exactly backwards. The deflection function @ ( I ;  e) for a 
given 0 has a single maximum 0 = T at I , .  The lines !+(e) and /-(e) determine a stripe 
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Z on the cylinder. Points outside Z are not affected by the billiard and hence they are 
mapped onto themselves by the scattering process. A point (0, I) in Z is mapped by 
the scattering into (e’, I ’ )  which is also in Z. Thus, Z is the domain of the PSM. 

The PSM in the present case is constructed in the following way. A point ( 8 ,  I) E Z 
corresponds to a straight line trajectory which is incident on the billiard at an angle 
e and an impact parameter b = I/ k with k the wavenumber (see figure I). The trajectory 
scatters into the direction 0’ with an angular momentum I‘ and the corresponding 
impact parameter b’. The next application of the PSM is realized by considering (e’, I’) 
as defining an incoming trajectory. It moves on the same line as the previous outgoing 
trajectory, but it impinges on the scattering at a diametrically opposite point. The 
generating function which induces the mapping is given in terms of the reduced action @=-(I rdp,+(  0 d l )  

where r and p, are the distance from the reference point and the conjugate momentum, 
respectively. One can easily show that @ is a sum of two terms, and each corresponds 
to (minus) the integral of the radial momentum from the point of least approach on 
the incoming or outgoing branch of the trajectory to the point of impact on the billiard. 
(In other words @ is the sum of the WKB phaseshifts incurred in the incoming and 
outgoing - -  branches of the trajectory. The phaseshift is negative due to the repulsive 
scattering potential.) 

Figure 1. Bounded trajectories of a particle that is trapped inside a convex billiard and 
trajectories of particles which are scattered from it. 

Any external scattering (0, I) + (e‘, I’) corresponds to an intemal trajectory which 
impinges on the billiard at the same point with opposite incoming and outgoing 
directions and the same values of the angular momenta but for a change of sign (see 
figure 1). Since the dynamics inside the billiard is completely described as a two- 
dimensional mapping (here we use the (0, I) representation), the correspondence 
between the scattering dynamics and the internal dynamics is established. The action 
-@ (see (3.1)) serves also as the generating function for the internal mapping. 

It should be noted that the requirement that the billiard is convex (rather, non- 
concave) was essential for the previous discussion. The PSM involves scattering trajec- 
tories which impinge only once on the billiard, which is the basic ingredient in 
establishing the one-to-one correspondence between the PSM and the intemal mapping. 
It allows the use of the polar coordinates to describe the dynamics, instead of the 
more generally applicable representation in terms of the arc length and the impact 
direction. Finally, it eliminates the occurrence of ‘ghost’ trajectories (see [12, 131). The 
one-to-one correspondence between the dynamics induced by the PSM on Z, and the 



O n  the transition to chaotic scattering 1489 

classical dynamics of a particle which is trapped inside the billiard has very important 
consequences. The shape of the billiard determines the degree of chaoticity of the 
dynamics inside (e.g. see [14,15]). Hence the conjugate PSM can display any degree 
of chaoticity when considered as a mapping on 2, even though the underlying scattering 
process itself is not chaotic. 

We return now to the quantum domain, where we would like to show that there 
exists a profound connection between the energy spectrum of the quantized motion 
inside the bi!!iard and the spem2-m ofthe eigenphases ofthe scattering -matrix fer !he 
‘outside’ problem. We shall start by deriving a semiclassical secular equation, which 
is written in terms of the S-matrix, and whose zeros are the eigenenergies of the 
quantized ‘inside’ problem. 

A general scattering wavefunction which vanishes on the billiard boundary can be 
written for r outside the billiard as 

* d r ) =  H W + Z  i d C , ( r )  (3.2) 

where H ; ( r )  are incoming and outgoing cylindrical waves with angular momentum 1. 
s is the scattering matrix. 

YY‘”(r) as defined above is also a solution of the Schrodinger equation inside the 
billiard, and it satisfies the boundary conditions on the billiard boundaries, but in 
generai it does not represent a bound state because it is not necessariiy reguiar at the 
origin. A linear combination of ‘U”’( r) would represent a bound state if the irregular 
radial parts all appear with vanishing coefficients. The condition for this to happen is 

m 

Z(E)=det( l -$E))=O (3.3) 

which is the desired secular equation for the ‘inside’ quantized billiard. The matrix .$ 
is of infinite dimension. This is why Z ( E )  as expressed above is not very useful. If 
we define L-=min(lL(6’)) and L,  =max(l+(O)) then, for any I which is sufficiently far 
from the interval ( L - ,  L+),  and for any m, we have - 

SI,, = ,%m. (3.4) 

This means that the value of the determinant (3.3) is always vanishingly small and, in 
order to extract usefui information, a way to discard the contribution from the physically 
uninteresting domain should be found. This is naturally achieved in the semiclassical 
domain, since here the approximate form (3.4) becomes progressively more exact. 
Thus we can truncate S to the domain 

L - S  I m S L ,  (3.5) 

and replace (3.3) by a semiclassical secular equation 

&,(E)  = det(1- S ( E ) )  = 0 (3.6) 

where S is a matrix of dimension L = L, - L- which is obtained by restricting .$ to 
the domain ( 3 . 9 ,  and which is semiclassically unitary, due to (3.4). 

To establish a correspondence between the energy spectrum of the billiard and the 
eigenphase spectrum of the S-matrix, we use an argument which was first introduced 
by Bogomolny [16] and independently by Doron [17]. 

A zero of the secular equation occurs each time that any of the eigenphases of the 
S-matrix @ ( E )  equals an integer multiple of 2n. Hence, the spectral density d ( E )  can 
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be expressed as 

(3.7) 

where T,  = Or(€), and the prime denotes differentiation with respect to E. 8,(x) is the 
periodic 8-function. Let us consider the spectral density at an interval of size A about 
a mean energy E,. A is taken to be large on the scale of the mean level separation, 
which is given by Weyl’s formula to be 2 a h 2 / A  where A is the area enclosed by the 
billiard. Then, for E = (E - Eo) < A 

I= ,  
(3.8) 

The T! are proportional to the eigenvalues of the time delay matrix l/i[S’S’], and 
therefore their distribution reflects the distribution of time delays in the classical 
scattering process. (Note that the Ti have the dimension of inverse energy.) In the 
present case of scattering from convex billiards, all the delay times are negative. Denote 
by T the mean delay time. Ifwe were able to show that the fluctuations in the distribution 
of the T! about their mean T are small, we could replace all the T~ in (3.8) by T. Defining 
B = ~ 1 ~ 1  we would get 

(3.9) 

which would have established the correspondence between the energy spectral density 
(the LHS of (3.9)) and the eigenphase spectral density (the RHS of (3.9)). Equation 
(3.8) is an approximation which holds only in the vicinity of the mean energy E,. The 
values of the eigenenergies derived from the higher values of the angular momentum 
I are not expected to be accurate, because they are the waves for which the approxima- 
tion (3.4) is expected to be at its worst. If we exclude the extreme values of l, and if 
the billiard is not too deformed, the classical delay time distribution will depend only 
slightly on the impact parameter and angle of incidence, and hence the corresponding 
T~ distribution is expected to be well centred about its mean value. This point is a 
central issue in [18], where it is shown that, in the semiclassical limit, the width of the 
T, distribution decreases as h approaches zero. 

Assuming the approximate validity of (3.9) we can come to the following conclusion. 
Take a billiard whose ‘inside’ problem displays classical chaos and therefore its energy 
spectrum can be described statistically in terms of random matrix theory. Then, the 
spectral statistics of the S-matrix eigenphases follows the same statistics even though 
the corresponding scattering is not chaotic. This argument is consistent with the 
observation mentioned above that the semiclassical proof [3] that the eigenphases 
spectrum follows RMT requires only that the PSM be chaotic when iterated as a mapping. 
If, on the other hand, the ‘inside’ problem is integrable and the energy spectrum is 
Poissonian, one would expect the same for the eigenphases spectrum ofthe correspond- 
ing S-matrix. 

4. Examples 

In the present section we shall illustrate the results obtained above by presenting a 
numerical solution of two scattering problems. 



On the transition 10 chaotic scattering 1491 

4.1. The Tying pan' 

The scattering occurs inside a domain which consists of a part of a circle which is 
joined to an infinitely long channel (see figure 2). According to a theorem introduced 
in [14], the motion in the billiard, which is obtained by closing the circular part along 
the chord that is common to the circle and the channel, is chaotic. A particle is injected 
along the channel and, after a few reflections in the circular part, it emerges again in 
the channel. The asymptotic region in the present system is the channel where the 
motion is separable in rectangular coordinates. We shall denote by (x, y) the longi- 
tudinal and transverse coordinates, respectively. The y-axis coincides with the chord 
which is common to the circle and the channel, and the x-axis runs at the centre of 
the channel. We measure distances in units of the radius of the circle, and denote by 
d the distance of the channel from the centre of the circle. W denotes half the channel 
width. 

W x -__L _ _ _ _ _ _ _  

Figure 2. Sketch of the 'frying pan'. A particle is injected along the channel and after a 
few reflections in the circular part it  is scattered back into the channel. 

The y-motion inside the channel is bounded and can be treated as an internal 
degree of freedom, for which action angle variables are the most appropriate coordin- 
ates. The action is just the absolute value of the y-momentum, 

I = IPJ (4.1) 

The total energy E and I will be used as the first two asymptotic labels of scattering 
trajectories. The corresponding angle variable is 

(4.2) 

where O(x) is the unit step function. $ is an example of an angle variable which is 
changing periodically along the asymptotic trajectory. Its reduced value is 

Ix 
(4.3) 

and a direct computation shows that 4 is constant along the trajectory. Besides the 
variables E and I it can therefore be used as a third label to specify a scattering 
asymptote. From now on we shall not consider the trivial ecergy dependence of the 
problem, and consider the scattering as a mapping of the (I, $1 space onto itself. Note 
that the constant energy condition implies that this space is bounded: 1 S ( 2 E ) 1 ' 2 .  

In a typical scattering experiment, the incoming energy and action variables are 
well defined, but the initial phase angle is not, resulting in a distribution of final 
outgoing momenta. The function Iont(&) plays here the role of a deflection function. 
Since the motion inside the circular region is regular there exist no unstable trapped 
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orbits and our system does not show topological chaos. The deflection function has 
only a finite number of singularities for typical values of Ii.. There exist exceptional 
values of I, ,  for which there might be an infinite number of singularities which have 
only a finite number of accumulation points. This is clear evidence for the absence of 
chaotic scattering in this problem. Figure 3 shows a typical deflection function. 

-1.0 I 
0.0 9," 6.28 

Figure 3. The deflection function IOu,(6,J far fired I , .  = 0.1 and parameter value d = 0.95. 

Another way to show that the present system is not chaotic is by considering the 
delay time, i.e. the time spent by the particle inside the circular region. Assume that 
the particle crosses the y-axis at a given angle and y-coordinate. These values define 
the angular momentum which labels the torus on which the particle moves when it 
scatters off the circle. The smaller W the longer (on average) will be the time which 
the particle spends inside, but eventually it will leave after a finite time. The existence 
of a maximai number N,,&) of bounces oii ihe circie for any vaiue of i is another 
indication of the lack of chaotic scattering in the present system. 

To define the PSM we chose as a reference system the free motion in the channel 
x > 0, lyl< W. This choice of the free Hamiltonian gives a reinjection mechanism which 
implies that 

(6, &= (6, %"t .  

Hence, successive applications of the PSM can be visualized by positioning a straight 
reflector on the chord at x = 0. The dynamics described by the PSM is thus the dynamics 
inside a closed billiard where one constructs a Poincari mapping by considering a 
section in phase space which consists of the straight chord at x=O. The relation 
between the 'inside' and the 'outside' problems is of the same kind as discussed in the 
previous section. 

The PSM is completely chaotic for any value of 0 < d < 1. Numerical simulations 
show that any trajectory of the PSM covers uniformly the available phase space. In 
figure 4 we show the numerical values deduced for the classical Lyapunov exponent 
as a function of d. The PSM is integrable for d = 0, since the angular momentum is a 
conserved quantity for d = 0. 

The quantum mechanical problem is solved by obtaining solutions of the Helmholtz 
cqY'l"u" W l l l l  U I L I C I I I G L  "uulrudry CUl lYl l lU l lD  "I1 LllC UUU~1"dLLSJ U1 L l l C  1 L J 1 U E ,  p'au . m L  

any given wavenumber k, the channel can support a finite number of propagating 
modes, whose number is given by the integer part of M / n .  Since the entire system 
is symmetric under y + -y,  the S-matrix is reducible, and we shall confine ourselves 

~-..-&:-- __.:.I. n:-:-t.,". L A--.. "--A:.:--- -- It.^ L ̂ ..^ A--:-" ^F.I.^ 'F-..:..,. ..̂... A.  
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Figure 4. The Lyapunov exponent of the PSM for the frying pan as a function of d. 

here to the subspace of antisymmetric wavefunctions. Scattering solutions at x+W 
can he decomposed into a linear combination of incoming and outgoing plane waves 
in the conducting modes. This defines the S-matrix, which, in the present case is a 
symmetric and unitary matrix of dimension L. 

The actual numerical solution was carried out by extending the method used in 
[19]. Numerical difficulties arise because of the corners at the joining points of the 
channel to the circle [ZO]. We have solved them in the present case by a method which 
is reported in the appendix, where we also describe briefly other issues which arise in 
the numerical work. The reliability of the calculations was tested by checking the 
unitarity of the calculated S-matrix. We found that matrices of dimension L s  50 can 
be computed for the range 0 s d 6 0.75 with reasonable accuracy. The deviation of the 
absolute value of the determinant of S, ldet SI, from the value 1 is 

To test the statistical properties of the S-matrix, we generated a database in the 
following way. We chose for d the values d = O ,  0.035, 0.05, 0.1, 0.3, 0.5 and 0.75, 
which allow us to scan the onset of chaoticity of the PSM in some detail. For each 
value of d we calculated at least 24 S-matrices with L = 8, 25 and 50. The S-matrices 
for the same d and L were calculated for k-values whose difference exceeded the k 
correlation length [18], thus ensuring statistical independence. Using this database we 
were able to compare our data with the predictions of RMT for the canonical ensemble 
of unitary, symmetric matrices (COE). 

We first checked the distribution of eigenphases. The semiclassical theory [3] as 
well as the discussion in section 2 suggest that the chaoticity of the PSM is sufficient 
to ensure that the eigenphases distribution follows the predictions of the RMT in the 
semiclassical limit. We find that this is indeed the case for the two statistical tests 
which are commonly used in similar studies. The nearest level distribution is shown 
in figure 5 for L=50 and various values of d. The transition between the Poisson 
distribution at  d = O  and the Wigner distribution occurs rather rapidly and already for 
d ~ 0 . 2  one finds a good agreement with the Wigner distribution. The .X2 statistics is 
plotted in figure 6 for the same set of S-matrices. The same trend of a transition toward 
the COE predictions is observed. Similar tests with matrices of lower dimensions give 
similar results, with the difference that the values of d where the transition to coe-like 
behaviour occurs is progressively higher for lower values of L. This behaviour can be 
understood on the following grounds [3,211. The inverse of the Lyapunov exponent 
defines a classical mixing time n,. The semiclassical connection between classical 
chaoticity and the RMT statistics requires that L >> n, >> 1. The requirement L >> n, is 
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Figure 5. Nearest-neighbour spacing distribution far L =  50 and ( a )  d = 0, ( b )  d =0.035, 
( e )  d = 0.1 and ( d )  d = 0.3. The variable S measures the spacing between two adjacent 
eigenphares in units of the mean spacing 2nlL The smooth curves correspond to the 
Poisson and Wigner distributions. 
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Figure 6. The X' statistics for the same values of d and L as in figure 5: x ,  d =o; 0, 
d = 0.035; 0, d = 0.1; + , d = 0.3. 
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easily fulfilled in the semiclassical limit since n, is a classical timescale, whereas L = 1/ h. 
From figure 4 we learn that n . 1 2  at d=0.1. We expect therefore to see deviations 
from the COE predictions for d ~ 0 . 1 .  

We now turn to tests which involve the distribution of the matrix elements of the 
S-matrix. The canonical COE ensemble requires that the mean value of any matrix 
element is zero. Thus, we have to ensure that in our system the energy-averaged 
S-matrix, (S), is zero. In other words we should avoid ‘direct’ processes, which would 
correspond classically to the contributions from trajectories with short delay times. 
We tested L-’ tr((S)(S)’) as a measure of the importance of the direct component as 
we change d. Its value varies between 0.01 and 0.035. 

Semiclassical arguments [3, 181 show that the matrix elements of the S-matrix may 
be correlated, depending on the smoothness of the distribution of the classical a@e 
variables of the emerging trajectories. In the present case, the distribution of c$ is 
uniform for not too small d-values, and we expect that our S-matrices will behave 
statistically like the COE. 

The first numerical check consists of the distribution of the normalized transition 
strengths 

x. ‘.I .=LIS. ‘I1 .I2 ’ (4.4) 

RMT predict that the non-diagonal x have an exponential distribution with unit mean, 
while time-reversal symmetry results in an exponential distribution for the diagonal 
elements which is twice broader. There is a good overall agreement between this 
expectation and the numerical data as is seen in figure 7. A more quantitative x2 fit 
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Figure 7. Distribution of the squared absolute value of the off-diagonal and the diagonal 
elements of S. The results far d = O  are shown in ( a )  and ( b ) .  those for d =0.3 in ( e )  and 
(d).  x measures lS,,l* in units of 1IL.  

0.00 
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of an exponential to the data showed some systematic deviation in the deduced values 
of the mean value and the intersection at x = 0. 

To check correlations between S-matrix elements we calculated the correlation 
functions F.,,(q) defined in [3,22]: 

where M<< L and the triangular brackets stand for k averaging. The COE prediction 
for these functions is that they are Kronecker 8-functions in q. The numerical functions 
obtained for various d-values are shown in figure 8; the trend of getting narrower 
distributions as d increases is quite clear. 

In summary we can say that the numerical tests performed on the present system 
confirm the semiclassical argument which establishes the link between coa-like 
behaviour of S-matrices and the chaotidty of the underlying PsM 

1.0 

0.8 

0.1 

(1.1 

0.1 

0.0 

Figure 8. The absolute value of the correlation function F R m ( q )  for n =32, m =27 and 
M = 7 :  ( 0 )  d = O ,  ( b )  d=0.75.  

4.2. Scattering from an array of hard discs 

Consider an infinite array of identical non-overlapping hard discs equally spaced along 
the y-axis in the plane. Systems of this kind were studied in [23] classically and in 
[24] quantum mechanically. The y-momentum and the reduced y-coordinate i serve 
as the action angle coordinates which label trajectories in the asymptotic domain, and 
the periodicity of the scatterers along the y-axis makes this coordinate a proper angle 
variable. In [23,24] the scattering potentials were chosen to be attractive, and gave 
rise to chaotic scattering. The present example does not show classical chaotic scattering 
since there exists only one unstable trapped periodic orbit along the segment of the 
y-axis between neighbouring discs. The deflection function p y ( j j n )  is affected by this 
trajectory, resulting in a strong focusing in the x-direction. 

One can easily see that the PSM in this problem is equivalent to the dynamics inside 
a Sinai billiard, defined with periodic boundary conditions. Hence this system belongs 
to class I1  with a hyperbolic PSM. 

The quantum mechanical solution of this problem was outlined in [24] and in order 
to apply it to the hard disc model the hard disc phaseshifts were supplied as the only 
necessary input. The periodicity in the y-direction implies that scattering is possible 
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Figure 9. Nearest-neighbour spacing distribution for L=380 and an infinite array of 
identical ( a )  hard discs and (b)  attractive scattering potentials. S measures the spacing 
between adjacent eigenphases in units of the mean spacing 2?r/L. The smooth CUNeS 
forrespond to the Poisson and Wigner distributions. 
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Figure 10. Distribution of the transition strength for off-diagonal and diagonal elements 
of S. ( 0 )  and ( b )  show the results for the hard disc problem, (c) and ( d )  those for the 
attractive scattering potential. 
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Figure 11. The dependence of lSB2l2 on the energy in the (a) hard disc and ( b )  attractive 
scattering potential models. 

only into a discrete (Bragg) manifold of directions, which are specified by the quantized 
values of the y-momentum. A database of S-matrices of dimension L = 380 was 
generated, and a comparison between the predictions of the COE and the results of 
the numerical calculations was carried out as was done for the previous example. 

Figure 9 shows the nearest-neighbour distribution of the phases of the S-matrix of 
the hard disc model and for comparison the corresponding distribution obtained for 
an infinite array of attractive scattering potentials. The agreement with the Wigner 
function is in both cases very good. The distributions of the normalized transition 
elements (4.4) are presented in figure 10. For the hard disc model they show appreciable 
deviations from the COE predictions, which are most probably due to the strong focusing 
observed in the classical distribution of final directions. Figure 11 presents the typical 
behaviour of the absolute value of an off-diagonal element of the scattering matrix as 
a function of E. Resonances reappear periodically in the hard disc model and their 
number is small compared to that in the model with attractive scattering potential, 
where one finds a random behaviour of the transition strength as a function of E. 
Figures 10(b) and l l ( b )  reproduce the behaviour one generally finds for class 111 
systems, while in class I1 systems the matrix elements, as one can see in figures lO(a) 
and I l (a) ,  do not need to behave like that. 

In summary, we may say that the numerical tests confirmed our expectations that 
the chaoticity of the PSM is sufficient to ensure that the S-matrix eigenphases distribute 
according to the COE predictions. The distribution of the matrix elements themselves 
may also follow the COE predictions if further conditions are met. 

5. Summary 

The main result of the present paper is that some of the RMT attributes of the S-matrix, 
in particular the distribution of its eigenphases, do not require the strong condition 
that the underlying classical scattering is chaotic. Rather, a much weaker requirement 
is sufficient, namely that the PSM taken as a mapping of the asymptotic domain onto 
itself is chaotic. For systems which do show classical chaotic scattering, the PSM is 
certainly chaotic, and therefore their quantum counterparts follow the statistics predic- 
ted by RMT to a very high accuracy. 
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There is a general question which is relevant to the discussion presented here and 
elsewhere conceming the study of the distribution of the matrix elements of the 
S-matrix. One could argue that the values of the S-matrix elements depend on the 
representation, and hence their distribution is arbitrary (within the constraint of 
unitarity and symmetry). The answer to this question is easy if one constructs the 
ensemble of S-matrices as we did in the numerical studies reported above. We construc- 
ted it by considering a family of S-matrices for a set of energy values. The spacing 
between successive energies is taken to exceed the energy correlation length, so that 
the ensemble members are uncorrelated. Non-integrability implies that there exists no 
energy-independent representation in which all the S-matrices can be diagonalized. 
This justifies the application of statistical methods and the relevance of statistical 
studies to the distribution of the matrix elements as well as the eigenvalues of the 
S-matrix. As a matter of fact, in a recent study [25] Doron and Smilansky showed 
that an ensemble of 2 x 2  S-matrices reproduces the invariant measure of the COE 

ensemble for N = 2 [%I. This is the strongest possible check for the RMT and it supports 
the approach taken here. 
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Appendix 1. Quantum mechanical evaluation of the seattering inside the 'frying pan' 

The Schrodinger equation for this problem corresponds to that of a free particle with 
Dirichlet condition on the boundary of the 'frying pan'. Since the entire system is 
symmetric under y + - y  we shall confine ourselves to the upper half of the frying pan 
and will consider only the antisymmetric wavefunctions. 

In the channel region the Schrodinger equation reads 

and the boundary conditions are 

Y&, W )  =o vx. 

With 
2 

k ' = k : + ( g )  

the scattering solution is given by 

(A.3) 
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where the first term in the braces corresponds to an incoming propagating mode, while 
in the second term the sum is taken over all outcoming propagating and a finite number 
of decaying modes. For propagating modes 

Hence, their number L is given by the integer part of Wklm. k, is complex if ta L, 
yielding an exponentially decaying contribution to the sum in (A.4). We take into 
account only a finite number Mc of these closed channels so that ( K j )  is a L x (L+ Mc) 
matrix. The reduced T-matrix with i, j < L provides the L x L scattering matrix. 

In the circular part of the 'frying pan' the Schrodinger equation reads 

with 

a = tan-' (:) R 2 =  d 2 +  W2.  

Ych(r, Q) has to fulfil the boundary condition 

* d R  'p) = 0 V 'p. (A.7) 
The solution of the Schrodinger equation is given as a linear combination of products 
of sine and spherical Bessel functions, 

which is truncated in numerical simulations at m = Mc. This ansatz has to be inserted 
iato ('4.7) ix o:dc: to &:ai:: the coeEcie~:s a,,,. There are severa! possibi!i!ics. to tzke 
into account the boundary condition. One can choose a set of discrete points along 
the circular boundary and require that *JR,  'p) vanishes for the corresponding values 
of 'p. In order to keep the remaining flux through the boundary negligibly small the 
number of these points has to be comparably high. A much more efficient method is 
to expand t J R ,  Q) in a complete set of suitably chosen orthogonal polynomials 
defined in [a, 711 and to require that the expansion coefficients vanish. 

For both methods numerical difficulties arise from the corners where the circular 
and the channel part are connected. To overcome them one has to choose a very high 
density of points around the corners when applying the first method, which thus turns 
out to be very costly and inefficient. For the second method an appropriate choice are 
the Cheb chev polynomials T , ( x ) ,  x E [-1,1], since they have a weight function w ( x )  = 
1/ J-?" 1 x2, which IS maximal ' at the borders of the range of x, 

i f n # 0  
if n = 0. 

1 
a 

Condition (A.7) leads to the integral equation 

s inx=O j = l , 2  ,..., N. (A.9) 

The integer N is determined by the number of unknown coefficients a,,,. 
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To obtain the solution for the entire system the solutions obtained from (A.1) and 
(A.6) have to be joined smoothly along the chord which is common to the circle and 
the channel. This is done by the requirement 

Again, it is most efficient to expand both wavefunctions and there first derivatives with 
respect to an adequate set of orthogonal functions. An appropriate function is 
sin(?rny/L), n = 1,2,. . . , because then on the RHS of the resulting equations for the 
expansion coefficients in the sum over f (see (A.4)) all but one term vanish. The 
corresponding set of equations reads 

(A.11) 

pd= tan - l ( i )  r d = w  n = 1,2, .  . . , L +  M c .  

After multiplying the first of these equations with m, the second with i M / k .  the 
unknown matrix elements T,s can be eliminated by adding the resulting equations. 
Equation (A.9) provides N and (A.ll), for a given incoming mode k,, ( L + M c )  
equations for the determination of the coefficients a, in (A.8). These are all MO 
unknowns so that 

(A.12) 

The scattering matrix is obtained from one of the equations (A.12) by insetting the 
calculated values for a,. For a given dimension L of the scattering matrix S, MG and 
Mc have been varied and for each choice the accuracy has been checked in several ways: 

(i) The resulting scattering matrix has to be symmetric, because the scattering 
system is invariant under time reversal. 

(ii) The absolute value of the determinant of S has to equal 1, Jdet SI = 1. We have 
chosen MO and Mc such that ldet SI deviates from 1 by less than 

(iii) We have inserted the numerically obtained values of a, into that equation 
derived from (A.11). which does not contain T,, and required that it is fulfilled up to 
a correction of less than lo@. 

MG = N + L + Mc.  
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